

Electrical Engineering

Examination

Coverage of the Electrical Engineering Exam

The Electrical Engineering Exam questions will cover the following areas:

#	Area	Number of Questions
1	Fundamentals of Electrical Circuits	8 or 9 questions
2	Fundamentals of Electromagnetism	8 or 9 questions
3	Electrical machines and Power Systems	8 or 9 questions
4	Electronics	8 or 9 questions
5	Fundamentals of Communication	8 or 9 questions
6	Control System Fundamentals	8 or 9 questions
	Total	50 questions

The exam covers the six areas mentioned above (8 or 9 questions from each area).

The topics covered in the Electrical Engineering Exams are listed below.

Fundamentals of Electrical Circuits:

- Circuit variables and elements
- Circuit laws and simple resistive circuits
- Inductance and Capacitance
- Responses of RL, RC and RLC Circuits
- AC network analysis
- Sinusoidal Steady-State Analysis
- AC power Calculations
- Power factor correction

Fundamentals of Electromagnetism:

- Electrostatic Fields in Material Space
- Magneto static Fields
- Inductance and Capacitance
- Maxwell's Equations and Electromagnetic Waves
- Electromagnetic Wave Propagation

Electrical machines and Power Systems:

- Electro-mechanical energy conversion
- Single and three-phase circuits
- DC motors and generators
- Transformers
- AC machines
- Synchronous machines
- Induction motors
- AC power and the per unit system
- Transmission line models in the transient and the steady state,
- Basics of Power system modeling

Electronics:

- Operational amplifiers characteristics and configurations
- Diodes characteristics and circuits
- Field Effect Transistors (FET) and bipolar junction transistors (BJT) characteristics
- Biasing
- Large/small signal models
- High and low frequency responses of amplifiers
- Data conversion and oscillator circuits.
- Basics of Digital logic circuits

Fundamentals of Communication:

- Convolution
- Signal transmission and channel characterization
- Fourier series and transform
- AM modulation and demodulation
- FM Modulation and demodulation
- Behavior of analog communication systems in the presence of noise
- Basics of digital communication systems.

Control System Fundamentals:

- Introduction to control systems
- Transfer functions
- Block diagrams
- Time responses
- Performance specifications of control systems
- Stability and the Routh-Hurwitz criterion
- Basic control actions and response of control systems
- Root Locus and Bode plots

Sample Questions of the Electrical Engineering Exam

Q1. What is the equivalent impedance of the following circuit:

- **A.** 10+j3 Ω
- **B.** 10 j3 Ω
- C. $10-j\Omega$
- **D.** 10+ j4 Ω

Q2. Most of the loads in power systems are:

- A. Capacitive Loads
- B. Inductive Loads
- C. Resistive Loads
- D. Zero power factor loads

Q3. For the circuit shown in the figure, the diode has an ON voltage of $V_D = 0.7$ Volt, then

- A. V = 0.7 Volt and I = 1.72 mA
- B. V=5 Volt and I=0 A
- C. V= 0 Volt and I=2 mA
- D. V = -0.7 Volt and I = -1.72 mA

Q4. If an electromagnetic wave is incident on a perfect conductor, then the wave would be

- A. Totally absorbed
- B. Totally reflected
- C. Totally transmitted
- D. Partially transmitted

Q5. The wave $E(t) = A \sin (\omega_c t + m(t))$ is under

- A. Amplitude modulation
- B. Frequency modulation
- C. No modulation
- D. All the above
- Q6. Consider the system depicted in the following block diagram. The signal *r* is the reference signal for the output y. The closed-loop transfer function of the system is:

$$\mathbf{A.} \qquad \frac{5}{s(s+4)}$$

$$\mathbf{B.} \qquad \frac{5K}{s(s+4)}$$

$$C. \qquad \frac{5K}{s^2 + 4s + 5K}$$

D. None of the above

Recommended References the Electrical Engineering Exam

The following references are suggested for the Electrical Engineering Exam.

- 1. J. Nilsson and S. Riedel, "Electric Circuits" 9th edition, Addison Wesley, 2011.
- 2. M. N. O. Sadiku, "Elements of Electromagnetics", 6th edition, Oxford University Press, 2011
- 3. E. Fitzgerald, C. Kingsley and S. D Umans, "Electric Machinery", 6th edition, Mc-Graw-Hill Higher Education, 2002.
- 4. S. Chapman, "Electric Machinery Fundamentals", 4th edition, McGraw-Hill, 2005.
- **5.** A. S. Sedra and K. C. Smith, "Microelectronic Circuits" 7th edition, Oxford University Press, 2015.
- 6. B. P. Lathi and Z. Ding, "Modern Digital and Analog Communication Systems", 4th edition, Oxford University Press, 2009.
- 7. N. S. Nise, "Control Systems Engineering", 7th edition, John Wiley & Sons, 2015.